A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin.

نویسندگان

  • Syed M Noorwez
  • David A Ostrov
  • J Hugh McDowell
  • Mark P Krebs
  • Shalesh Kaushal
چکیده

PURPOSE Many mutations in rhodopsin, including P23H, result in misfolding and mislocalization of the protein. It has been demonstrated that pharmacologic chaperones are effective in assisting the proper folding and targeting of P23H opsin. This study was designed to investigate a high-throughput screening strategy for identification of pharmacologic chaperones by using a combination of in silico, cell-based, and in vitro METHODS methods. A library of 24,000 drug-like small molecules was screened by in silico molecular docking with DOCK5.1. The top hits were assayed in an in vitro competition assay. The selected compound was then assayed for pharmacologic chaperoning activity in stable cell lines expressing wild-type and P23H opsin. RESULTS Beta-ionone was easily identified by the high-throughput screen. It strongly inhibits rhodopsin formation and, when incubated in cells expressing P23H opsin, resulted in a 2.5-fold rescue of P23H opsin. The screen also identified compound NSC45012 [1-(3,5-dimethyl-1H-pyrazol-4-yl)ethanone], a weak inhibitor of opsin regeneration and resulted in a 40% rescue of the mutant opsin. The level of rescue correlated well with the extent of inhibition. CONCLUSIONS A combination of in silico and cell-based screening provides a useful tool for identifying pharmacologic chaperones for P23H opsin. This approach identified both potent and weak pharmacologic chaperones. Both types of molecules may be potential candidates for treatment of opsin-related RP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein.

Pharmacological chaperones are small molecules that bind to proteins and stabilize them against thermal denaturation or proteolytic degradation, as well as assist or prevent certain protein-protein assemblies. These activities are being exploited for the development of treatments for diseases caused by protein instability and/or aberrant protein-protein interactions, such as those found in cert...

متن کامل

High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK.

DnaK is a molecular chaperone of Escherichia coli that belongs to a family of conserved 70-kDa heat shock proteins. The Hsp70 chaperones are well known for their crucial roles in regulating protein homeostasis, preventing protein aggregation, and directing subcellular traffic. Given the complexity of functions, a chemical method for controlling the activities of these chaperones might provide a...

متن کامل

Nootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method

The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...

متن کامل

Fabry Disease – Current Treatment and New Drug Development

Fabry disease is a rare inherited lysosomal storage disorder caused by a partial or complete deficiency of α-galactosidase A (GLA), resulting in the storage of excess cellular glycosphingolipids. Enzyme replacement therapy is available for the treatment of Fabry disease, but it is a costly, intravenous treatment. Alternative therapeutic approaches, including small molecule chaperone therapy, ar...

متن کامل

Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists.

The formylpeptide receptor (FPR) family of G-protein-coupled receptors contributes to the localization and activation of tissue-damaging leukocytes at sites of chronic inflammation. We developed a FPR homology model and pharmacophore (based on the bovine rhodopsin crystal structure and known FPR ligands, respectively) for in silico screening of approximately 480,000 drug-like small molecules. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 49 7  شماره 

صفحات  -

تاریخ انتشار 2008